1	SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome
2	Liguo Zhang ¹ , Alexsia Richards ¹ , Andrew Khalil ^{1, 2, 3} , Emile Wogram ¹ , Haiting Ma ¹ , Richard A.
3	Young ^{1, 4} , Rudolf Jaenisch ^{1, 4, #}
4	
5	¹ Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
6	² John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
7	MA, USA.
8	³ Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA,
9	USA.
10	⁴ Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
11	[#] Correspondence: jaenisch@wi.mit.edu
12	
13	
14 15	Summary
16	Prolonged SARS-CoV-2 RNA shedding and recurrence of PCR-positive tests have been
17	widely reported in patients after recovery, yet these patients most commonly are non-infectious ¹⁻
18	¹⁴ . Here we investigated the possibility that SARS-CoV-2 RNAs can be reverse-transcribed and
19	integrated into the human genome and that transcription of the integrated sequences might
20	account for PCR-positive tests. In support of this hypothesis, we found chimeric transcripts
21	consisting of viral fused to cellular sequences in published data sets of SARS-CoV-2 infected
22	cultured cells and primary cells of patients, consistent with the transcription of viral sequences
23	integrated into the genome. To experimentally corroborate the possibility of viral retro-
24	integration, we describe evidence that SARS-CoV-2 RNAs can be reverse transcribed in human

25	cells by reverse transcriptase (RT) from LINE-1 elements or by HIV-1 RT, and that these DNA
26	sequences can be integrated into the cell genome and subsequently be transcribed. Human
27	endogenous LINE-1 expression was induced upon SARS-CoV-2 infection or by cytokine
28	exposure in cultured cells, suggesting a molecular mechanism for SARS-CoV-2 retro-integration
29	in patients. This novel feature of SARS-CoV-2 infection may explain why patients can continue
30	to produce viral RNA after recovery and suggests a new aspect of RNA virus replication.
31	
32	
33 34	Introduction
35	Continuous or recurrent positive SARS-CoV-2 PCR tests have been reported in patients
36	weeks or months after recovery from an initial infection ¹⁻¹⁴ . Although <i>bona fide</i> re-infection of
37	SARS-CoV-2 after recovery has been reported lately ¹⁵ , cohort-based studies with strict
38	quarantine on subjects recovered from COVID-19 suggested "re-positive" cases were not caused
39	by re-infection ^{16,17} . Furthermore, no replication-competent virus was isolated or spread from
40	these PCR-positive patients ^{1-3,5,6,12} . The cause for such prolonged and recurrent viral RNA
41	production is unknown. As positive-stranded RNA viruses, SARS-CoV-2 and other beta-
42	coronaviruses such as SARS-CoV-1 and MERS employ an RNA-dependent RNA polymerase to
43	replicate their genomic RNA and transcribe their sub-genomic RNAs ¹⁸⁻²⁰ . One possibility is that
44	SARS-CoV-2 RNAs could be reverse-transcribed and integrated into the human genome, and
45	transcription of the integrated DNA copies could be responsible for positive PCR tests.
46	Endogenous reverse transcriptase (RT) activity has been observed in human cells, and the
47	products of reverse transcription have been shown to become integrated into the genome ^{21,22} . For
48	example, APP transcripts have been shown to be reverse-transcribed by endogenous RT, with

49	resultant APP fragments integrated into the genome of neurons and transcribed ²² . Human LINE-
50	1 elements (~17% of the human genome), a type of autonomous retrotransposons, are a potential
51	source of endogenous RT, able to retro-transpose themselves and other non-autonomous
52	elements such as Alu ^{21,23} .
53	
54	
55 56	Results
57	Expression of viral-cellular chimeric transcripts in infected cultured and in patient-derived
58	cells is consistent with genomic integration of viral sequences.
59	To investigate the possibility of viral integration into virus infected cells we analyzed
60	published RNA-Seq data from SARS-CoV-2 -infected cells for evidence of chimeric transcripts,
61	which would be indicative of viral integration into the genome and expression. Examination of
62	these data sets ²⁴⁻³⁰ (Fig. S1a-b) revealed a substantial number of host-viral chimeric reads (Fig.
63	1a-c, S1c). These occurred in multiple sample types, including cells and organoids from
64	lung/heart/brain/stomach tissues, as well as BALF cells directly isolated from COVID-19
65	patients (Fig. 1c). Chimeric read abundance was positively correlated with viral RNA level
66	across the sample types (Fig. 1c). Chimeric reads generally accounted for 0.004% - 0.14% of
67	total SARS-CoV-2 reads across the samples, with a 69.24% maximal number of reads in
68	bronchoalveolar lavage fluid cells derived from severe COVID19 patients and near no chimeric
69	reads from patient blood buffy coat cells (corresponding to almost no total SARS-CoV-2 reads).
70	A majority of chimeric junctions mapped to SARS-CoV-2 nucleocapsid (N) sequence (Fig. 1d-
71	e). This is consistent with the finding that nucleocapsid (N) RNA is the most abundant SARS-
72	CoV-2 sub-genomic RNA ³¹ , and thus is most likely to be a target for reverse transcription and

73	integration. These analyses support the hypothesis that SARS-CoV-2 RNA may retro-integrate
74	into the genome of infected cells resulting in the production of chimeric viral-cellular transcripts.
75	

76 SARS-CoV-2 RNA can be reverse-transcribed and integrated into the human genome in

77

cells overexpressing a reverse transcriptase

78 To provide experimental evidence for reverse-transcription and integration of SARS-

79 CoV-2 RNA, we overexpressed human LINE-1 or HIV-1 reverse transcriptase (RT) in

80 HEK293T cells and infected the transduced cells with SARS-CoV-2. The cells were tested 2

81 days after infection for viral sequences by PCR or fluorescence *in situ* hybridization (FISH) (Fig.

82 2a). Considering that the N RNA is the most abundant SARS-CoV-2 sub-genomic RNA³¹ and is

83 most likely to be retro-integrated (Fig. 1d-e), we chose four N – targeting PCR primer sets that

84 are used in COVID-19 tests (primer source from WHO³², Fig. 2a). PCR amplification of purified

85 cellular DNA showed positive gel-bands in cells with human LINE-1 or HIV-1 RT

86 overexpression (Fig. 2b) but not in non-transfected or non-infected cells. To test whether the

87 DNA copies of N sequences were integrated into the cellular genome, we gel-purified cell

88 genomic DNA (gDNA, >23 kb, Fig. S2a) and qPCR confirmed N sequences in gDNA of cells

89 with expression of all three types of RT (Fig. 2c). Cells with strong expression of LINE-1 driven

90 by a CMV promoter showed ~8-fold higher signals of N sequence detection suggesting a higher

91 copy-number of integrated N sequences than in cells expressing LINE-1 driven by its natural

92 promoter (5'UTR) or HIV-1 RT (Fig. 2c). We were able to clone full-length N DNA from gDNA

93 of cells overexpressing CMV-LINE-1 and confirmed its sequence by Sanger sequencing (Fig.

94 S2b). We did not detect the full-length N sequence from gDNA of cells transfected with 5'UTR-

95 LINE-1 or HIV-1 RT, which may be due to lower expression of RT in these cells (Fig. S2b). We

96	further confirmed that purified SARS-CoV-2 RNA from infected cells can be reverse-transcribed
97	in vitro by lysates of cells expressing either LINE-1 or HIV-1 RT (Fig. S2c-d).
98	We conducted single-molecule RNA-FISH (smRNA-FISH) using fluorophore-labeled
99	oligo-nucleotide probes targeting N (Fig. 2a) to confirm that viral N sequences were integrated
100	and detected their transcription in the nucleus. SARS-CoV-2 infected cells showed the expected
101	cytoplasmic FISH signals of N RNA (Fig. S3a). N RNA FISH signals were detected in cell
102	nuclei with cells overexpressing LINE-1 (Fig. 2d, S3b), indicating nascent transcription sites of
103	integrated N sequences. In the same cell population, a significantly higher fraction (~35%) of
104	infected cells overexpressing LINE-1, as indicated by LINE-1 ORF1p immunostaining, showed
105	nuclear N signals than cells not overexpressing LINE-1 (~12%) (Fig. 2e). A significantly higher
106	fraction of infected cells that were transfected with LINE-1 plasmid (~80% transfection
107	efficiency) showed positive nuclear N FISH signals (~30%) as compared to non-transfected cells
108	(13%; Fig. S3c). Infected but not transfected cells also exhibited nuclear N signals, albeit at a
109	lower frequency (~10%; Fig. 2e, S3c), implying integration of SARS-CoV-2 N RNA by cell
110	endogenous RT activity.
111	
112	Human endogenous LINE-1 expression induced by SARS-CoV-2 infection and cytokines

113 correlates with retro-integration

Human LINE-1 elements are autonomous retro-transposons with their encoded reverse transcriptase (ORF2p) and supporting protein (ORF1p) also aiding non-autonomous elements to retro-transpose, such as Alu and other cellular RNAs²¹. We found that expression of LINE-1 elements was significantly up-regulated in published RNA-Seq data of cells upon infection with SARS-CoV-2 and correlated with chimeric read abundance (Fig. 3a-b, S4a-d, compare Calu3

119	cells that are efficiently infected versus NHBE cells that are resistant to infection). Although the
120	upregulation in Calu3 was not higher than that in NHBE, multiple LINE-1 elements were
121	upregulated as compared to just one in NHBE (Fig. 3a, S4b, d). Expression analysis using LINE-
122	1 specific primers ^{33,34} showed a \sim 3-4-fold up-regulation of LINE-1 in Calu3 cells when infected
123	by SARS-CoV-2 (Fig. 3c). Moreover, PCR analysis on Calu3 cellular DNA showed retro-
124	integration of SARS-CoV-2 N sequences after infection (Fig. 3d-e), possibly by the activated
125	LINE-1 reverse transcriptase.
126	Patients infected with SARS-CoV-2 and other corona viruses show evidence of cytokine
127	induction associated with the immune response, and in severe cases experience a cytokine
128	storm ³⁵⁻³⁷ , prompting us to investigate whether cytokines alone can induce LINE-1 activation.
129	We treated cells with cytokine-containing conditioned media from Myeloid, Microglia, or CAR-
130	T cell cultures and found a ~2-3-fold upregulation of endogenous LINE-1 expression by PCR
131	analysis (Fig. 3f, S5b). Expressed LINE-1 protein (ORF1p) was also confirmed by
132	immunofluorescence staining (Fig. 3g-h, S5a). In summary, our results show induced LINE-1
133	expression in cells stressed by viral infection or exposed to cytokines, suggesting a molecular
134	mechanism for SARS-CoV-2 retro-integration in human cells.

136 137 138	Discussion		
138	In this study, we showed evidence that SARS-CoV-2 RNAs can be reverse-transcribed		
140	and integrated into the human genome by several sources of reverse transcriptase such as		
141	activated human LINE-1 or co-infected retrovirus (HIV). We found LINE-1 expression can be		
142	induced upon SARS-CoV-2 infection or cytokine exposure, suggesting a molecular mechanism		
143	responsible for SARS-CoV-2 retro-integration in patients. Moreover, our results suggest that the		
144	integrated SARS-CoV-2 sequences can be transcribed, as shown by RNA-Seq and smRNA-FISH		
145	data, providing a possible explanation for the presence of viral sequences at later times after		
146	initial virus exposure and in the absence of detectable infectious virus ¹⁻¹⁴ . The retro-inserted		
147	SRAS-CoV-2 sequences are most likely sub-genomic fragments, as the integration junctions are		
148	mostly enriched at the N sequence (Fig. 1d-e), excluding the production of infectious virus. Our		
149	data may also explain that patients, after recovery from disease symptoms, may become again		
150	positive for viral sequences as detected by PCR ^{1,8-14} .		
151	An important follow-up question is whether these integrated SARS-CoV-2 sequences can		
152	express viral antigens. If so, it will be of clinical interest to assess whether viral antigens		
153	expressed from integrated virus fragments could trigger an immune response in patients that		
154	could affect the course and treatment of the disease. It is possible that the clinical consequences		
155	of the integrated viral fragments may depend on their insertion sites in the human genome, and		
156	on epigenetic regulation which has been shown in HIV patients ³⁸ . Careful analysis on SARS-		
157	CoV-2 retro-integration sites in patient samples and correlation with disease severity will help to		
158	elucidate potential clinical consequences. Furthermore, immune response may vary depending on		
159	an individual's underlying conditions. More generally, our results suggest a novel aspect of		
160	infection possibly also for other common disease-causing RNA viruses such as Dengue, Zika or		

161 Influenza virus, which could be subject to retro-integration and perhaps affect disease

162 progression.

163	Human LINE-1 accounts for $\sim 17\%$ of the human genome, ~ 100 out of 500,000 copies of
164	which are active ^{21,23} . LINE-1 – encoded reverse-transcriptase (ORF2p) and supporting protein
165	(ORF1p) are known to retro-transpose not only LINE-1 transcripts (in Cis), but also other RNA
166	species such as Alu (SINE) and cellular mRNA (in Trans, creating processed pseudogenes), with
167	a "target-site – primed reverse transcription" mechanism ²¹ . LINE-1 proteins have been shown as
168	nucleic acid chaperones with high RNA binding affinity ³⁹ , therefore it is perhaps not surprising
169	that they can retro-integrate exogenous viral RNAs. From an evolutionarily perspective, retro-
170	integration of viral RNA by LINE-1 could be an adaptive response by the host to provide
171	sustaining antigen expression possibly enhancing protective immunity. Conversely, retro-
172	integration of viral RNAs could be detrimental and cause a more severe immune response in
173	patients such as a "cytokine storm" or auto-immune reactions.
174	Our results may also be relevant for current clinical trials of antiviral therapies ⁴⁰ . The
175	reliance of PCR tests to assess the effect of treatments on viral replication and viral load may not
176	reflect the efficacy of the treatment to suppress viral replication as the PCR assay may detect
177	viral transcripts from viral sequences stably integrated into the genome rather than infectious
178	virus.
170	

	.80 .81	Methods
1	.82	Cell culture and plasmid transfection
1	.83	HEK293T cells were obtained from ATCC (CRL-3216) and cultured in DMEM
1	.84	supplemented with 10% heat-inactivated FBS (Hyclone, SH30396.03) and 2mM L-glutamine

- 185 (MP Biomedicals, IC10180683) following ATCC's method. Calu3 cells were obtained from
- 186 ATCC (HTB-55) and cultured in EMEM (ATCC 30-2003) supplemented with 10% heat-
- 187 inactivated FBS (Hyclone, SH30396.03) following ATCC's method.
- 188 Plasmid for HIV-1 reverse transcriptase expression: pCMV-dR8.2 dvpr was a gift from
- Bob Weinberg (Addgene plasmid # 8455 ; http://n2t.net/addgene:8455 ;
- 190 RRID:Addgene_8455)⁴¹. Plasmids for human LINE-1 expression: pBS-L1PA1-CH-mneo
- 191 (CMV-LINE-1) was a gift from Astrid Roy-Engel (Addgene plasmid # 51288 ;
- 192 http://n2t.net/addgene:51288 ; RRID:Addgene_51288)⁴²; EF06R (5'UTR-LINE-1) was a gift
- 193 from Eline Luning Prak (Addgene plasmid # 42940 ; http://n2t.net/addgene:42940 ;
- 194 RRID:Addgene_42940)⁴³. Transfection was done with Lipofectamine[™] 3000 (Invitrogen
- 195 L3000001) following manufacturer's protocol.

196

197 SARS-CoV-2 infection

198 SARS-CoV-2 USA-WA1/2020 (Gen Bank: MN985325.1) was obtained from BEI

199 Resources and expanded and tittered on Vero cells. Cells were infected in DMEM +2% FBS for

- 48 hrs using multiplicity (MOI) of 0.5 for infection of HEK293T cells and an MOI of 2 for
- 201 Calu3 cells. All sample processing and harvest with infectious virus were done in the BSL3

202 facility at the Ragon Institute.

204 Nucleic acids extraction, *in vitro* reverse transcription and PCR/qPCR

DNA extraction was following a published protocol²². For purification of genomic DNA, 205 206 extracted total cellular DNA was run on 0.4% (w/v) agarose/1x TAE gel for 1.5 hrs with a 207 3V/cm voltage, with λ DNA-HindIII Digest (NEB N3012S) as size markers. Large fragment 208 bands (>23.13 kb) were cut off, frozen in -80 °C and then crushed by a pipette tip. 3 times of 209 volume (v/w) of high T-E buffer (10 mM Tris - 10 mM EDTA, pH 8.0) was added and then 210 NaCl was added to 200 mM. Gel solution was heated at 70 °C for 15 mins with constant mixing 211 and then extracted with Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v) (Life Technologies 212 15593031) and Chloroform: Isoamyl alcohol 24:1 (Sigma C0549-1PT). DNA was then 213 precipitated by sodium acetate and isopropyl alcohol. For small amount of DNA, glycogen (Life

Technologies 10814010) was added as a carrier to aid precipitation.

215 RNA extraction was done with either TRIzolTM LS Reagent (Invitrogen 10296010) or

216 RNeasy Plus Micro Kit (Qiagen 74034) following manufacturers' protocols. RNA reverse

217 transcription was done with either SuperScript[™] III First-Strand Synthesis SuperMix (oligo dT +

random hexamer, Invitrogen 18080400) or qScript cDNA SuperMix (QuantaBio 95048-500),

219 following manufacturers' protocols. *In vitro* reverse transcription assay for viral RNA by cell

220 lysates was done following a published protocl²².

PCR was done using AccuPrime Taq DNA Polymerase, high fidelity (Life Technologies
12346094). qPCR was done using SYBRTM Green PCR Master Mix (Applied Biosystems
4309155) or PowerUpTM SYBRTM Green Master Mix (Applied Biosystems A25742) in a

224 QuantStudioTM 6 system (Applied Biosystems). See **Supplementary Table 1** for primer

sequences used in this study. qPCR plots were generated with Prism 8 (Prism).

227 Immuno-fluorescence staining and single-molecule RNA-FISH

- 228 Cells subject to SARS-CoV-2 infection were grown in μ-Slide 8 Well (#1.5 polymer,
- 229 Ibidi 80826) and fixed with 4% paraformaldehyde/CMF-PBS at room temperature (RT) for 30
- 230 mins. Otherwise, cells were grown on 12 mm round coverslips (#1.5, Warner Instruments 64-
- 231 0712) and fixed with 1.6% paraformaldehyde/CMF-PBS at room temperature (RT) for 15 mins.
- 232 Cells were permeabilized with 0.5% (v/v) Triton X-100/PBS, blocked with 4% (w/v) BSA/CMF-
- 233 PBS at RT for 1 hr, incubated with 1:200 diluted anti-LINE-1 ORF1p mouse monoclonal
- antibody (clone 4H1, Sigma MABC1152, Lot 3493991), and then with 1:400 diluted Donkey-
- anti-Mouse-Alexa Fluor 594 second antibody (Invitrogen 21203).

236 Single-molecule RNA-FISH probes (Stellaris®) were ordered from LGC Biosearch

- 237 Technologies with Quasar® 670 Dye labeling. See Supplementary Table 2 for probe
- 238 sequences. FISH procedure combining with immuno-fluorescence staining was following
- 239 previous publications 44,45 .
- 240 Cells in μ-Slide were mounted with Ibidi Mounting Medium With DAPI (Ibidi 50011).
- 241 Cells on coverslips were mounted with VECTASHIELD® HardSetTM Antifade Mounting

242 Medium with DAPI (Vector Laboratories H-1500-10).

243

244 Microscopy and imaging analysis

3D optical sections were acquired with 0.2-μm z-steps using a DeltaVision Elite Imaging
System microscope system with a 100 × oil objective (NA 1.4) and a pco.edge 5.5 camera and

- 247 DeltaVision SoftWoRx software (GE Healthcare). Image deconvolution was done using
- 248 SoftWoRx. All figure panel images were prepared using FIJI software (ImageJ, NIH) and Adobe
- 249 Illustrator 2020 (Adobe), showing deconvolved single z-slices.

250	To measure the LINE-1 ORF1p immuno-staining signal intensity, we projected cell
251	optical sections (sum, 42 slices) with the "z projection" function in FIJI. We measured the sum
252	of intensity of the entire cell area in the z-projected image as the signal intensity, subtracted the
253	background intensity outside of cells and then divided by the mean of the "Basal media
254	treatment" group to have the normalized signal intensity, as previously described ^{44,45} . All images
255	from the same experiment were using the same exposure time and transmitted exciting light. All
256	intensity measurements were done with non-deconvolved raw images. Box plot was done in R
257	$(version 4.0.3)^{46}$.
258	
259	RNA-Seq data analysis
260	RNA-Seq data were downloaded from GEO with the accession numbers GSE147507 ²⁴ ,
261	GSE153277 ²⁵ , GSE156754 ²⁶ , GSE157852 ²⁷ , GSE153684 ²⁸ , GSE145926 ²⁹ , GSE154998 ³⁰
262	(summarized in Supplementary Figure 1a).
263	To identify human - SARS-CoV-2 chimeric reads, raw sequencing reads were aligned to
264	concatenated human and SARS-CoV-2 genomes plus transcriptomes by STAR (version
265	2.7.1a) ⁴⁷ . Human genome version hg38 with no alternative chromosomes and gene annotation
266	version GRCh38.97 were used. SARS-CoV-2 genome version NC_045512.2 and gene
267	annotation (http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/genes/) were used.
268	The following STAR parameters ³¹ were used to call chimeric reads unless otherwise specified
269	(Supplementary Figure 1a):chimOutType Junctions SeparateSAMold WithinBAM HardClip
270	\chimScoreJunctionNonGTAG 0 \alignSJstitchMismatchNmax -1 -1 -1 \
271	chimSegmentMin 50 \chimJunctionOverhangMin 50.

To analyze human LINE-1 expression in RNA-Seq data, a published method,
RepEnrich2⁴⁸, was used to map RNA-Seq reads to human repeat annotations, using human
repeat masker (hg38). Differential expression was analyzed using EdgeR package (version
3.30.3)^{49,50} in R (version 4.0.3)⁴⁶.

276

277 Conditioned media production and treatment

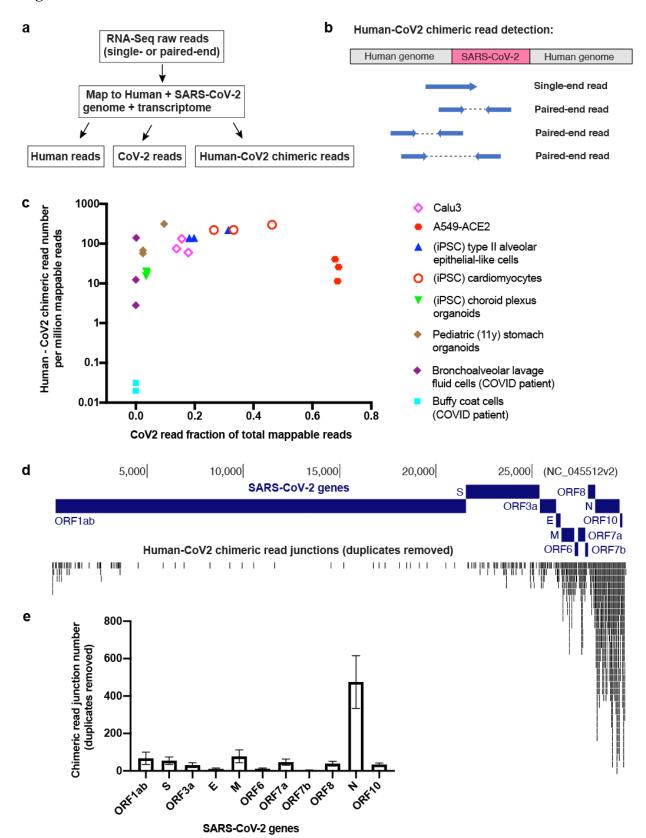
278 As previously described⁵¹, myeloid precursors were derived from human pluripotent stem 279 cells. Briefly, human embryonic stem cells were cultured in StemFlex (ThermoFisher) feeder-280 free medium on MatrigelTM- (Corning) coated tissue culture polystyrene. 24 hrs before single-281 cell harvesting via TrypLE Express (ThermoFisher), cells were treated with 10 μ M ROCK 282 Inhibitor (Y-27632) (Stem Cell Technologies) in Essential 8 (E8) medium (ThermoFisher). After 283 harvesting, cells were centrifuged at 300 g for 3 mins in non-adherent U-bottom 96-well plates 284 (Corning) at 10,000 cells per 150 µL/well of embryoid body (EB) medium consisting of 10 µM 285 ROCK Inhibitor, 50 ng/mL BMP-4 (Peprotech), 20 ng/mL SCF (Peprotech), 50 ng/mL VEGF 286 (Peprotech), and 100 U/mL Penn/Strep (ThermoFisher) in E8 base medium. EBs were cultured 287 in the 96-well plates for 4 days with 150 μ L/well of EB medium added at day 2. After 4 days, 16 EBs/well were plated in a 6-well tissue culture polystyrene plated coated with MatrigelTM in 288 289 hematopoietic myeloid medium (HIM) consisting of 2mM GlutaMax (ThermoFisher), 55 µM 290 beta-mercaptoethanol, 100 ng/mL M-CSF (Peprotech), and 25 ng/mL IL-3 (Peprotech) in X-291 VIVO 15 base medium (Lonza). HIM media was changed every 3-4 days for 2-3 weeks until 292 floating CD14-positive myeloid precursors emerged. Myeloid conditioned media consisted of floating myeloid cells cultured in HIM media for 7 days at a concentration of $0.5 \times 10^6 - 1 \times 10^6$ 293 294 cells/mL. Cells in conditioned media were removed by centrifugation and filtration through 0.2

µM filters. Calu3 cells were cultured in the myeloid conditioned media or HIM media (basal) for
two days with daily media change before harvest or fixation.

297 Microglia were differentiated from human induced pluripotent stem cells (hiPSCs) via 298 embryoid bodies and primitive macrophage precursors (PMPs)⁵¹. In brief, hiPSCs (cultured 299 feeder-free on matrigel in StemFlexTM (Gibco)) were dissociated with TrypLE Express (Gibco), 300 and 10,000 cells were plated per well in 96-well ultra-low attachment plates (Corning) in 100 μ L 301 embryoid body medium (10 µM ROCK inhibitor, 50 ng/mL BMP-4, 20 ng/mL SCF, and 50 302 ng/mL VEGF-121 in StemFlex), before centrifugation at 300 × g for 3 mins at 4 °C. Embryoid 303 bodies were cultured for 4 days, with adding 100 µL embryoid body medium after 2 days. 12 to 304 16 embryoid bodies were plated per well of tissue culture-treated 6-well plates and cultured in 3 305 mL hematopoetic medium (2 mM GlutaMax, 100 U/mL penicillin, 100 µg/mL streptomycin, 55 306 μM β-mercaptoethanol, 100 ng/mL M-CSF, 25 ng/mL IL-3, 100 U/mL penicillin, 100 μg/mL 307 streptomycin in X-VIVO 15 (Lonza, BW04418Q). From this point on, 2 mL medium was 308 exchanged every 4-7 days. PMPs were harvested from suspension during medium exchange and 309 plated in microglia differentiation media over 7-14 days to produce microglia like cell 310 monocultures (Neurobasal (Life Technologies 21103049) supplemented with Gem21 NeuroPlex 311 without Vitamin A (GeminiBio, 400-161), 2mM GlutaMAX (Gibco), 100 ng/mL IL-34, and 10 312 ng/mL GM-CSF, 100 U/mL penicillin, 100 µg/mL streptomycin). For microglia stimulation, 313 microglia differentiation media was exchanged with HEK293T media (DMEM + 10% heat-314 inactivated FBS + final 2mM L-Glutamine) and supplemented with 100 hg/ml 315 lipopolysaccharide (LPS, Sigma Aldrich L4391-1MG) or PBS. After 24 hrs, the microglia 316 conditioned media was collected, centrifugated (1000 rpm 10min) and the supernatant was

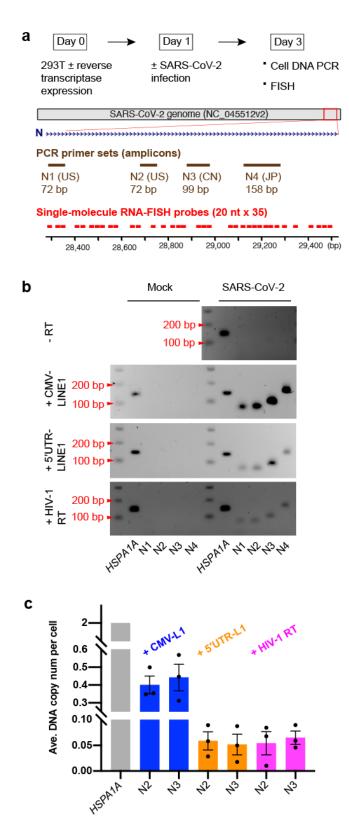
317	directly applied to HEK293T cells. HEK293T cells received microglia conditioned media or
318	basal HEK293T media on three constitutive days before fixation.
319	Human anti-CD19 CAR-T cells were generated by transduction of primary T cells
320	purified from human peripheral blood mononuclear cells (PBMC) with CD19-CAR expressing
321	retrovirus ⁵² . Anti-CD19 CAR-T cells were co-cultured with CD19-expressing beta-like cells ⁵² or
322	WIBR3 cells with a luciferase-2A-CD19 expressing cassette integrated at the AAVS1 locus in
323	RPMI1640 medium with 10% human serum AB. Cells in the conditioned medium were removed
324	by filtration through 0.45 μ M filters. RPMI1640 medium with 10% human serum AB was used
325	as basal media control. Calu3 cells were cultured in the CAR-T conditioned media with indicated
326	dilutions or in the basal media for two days before harvest.
327	
328	
329	Data Availability
330	The datasets generated during and/or analysed during the current study are available from
331	the corresponding author on reasonable request.
332	
333	
333 334	Acknowledgements
	Acknowledgements We thank members in the laboratories of Rudolf Jaenisch and Richard Young and other
334	
334 335	We thank members in the laboratories of Rudolf Jaenisch and Richard Young and other
334 335 336	We thank members in the laboratories of Rudolf Jaenisch and Richard Young and other colleagues from Whitehead Institute and MIT for helpful discussions and resources. We thank

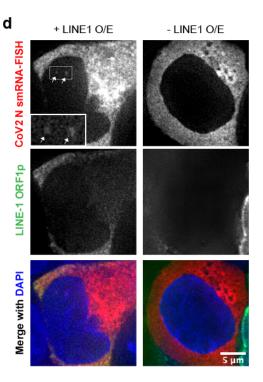
340	by a generous gift from Dewpoint Therapeutics and from Jim Stone. ASK would like to
341	acknowledge funding from the NIH (Grant: T32 EB016652). Finally, we thank Nathans Island
342	for inspiration.
343	
344	
345	Author contributions
346	Project design by R.J. and R.A.Y, execution of experiments and data analysis by L.Z.,
347	A.R, R.J and R.A.Y; E.W., A.K., and H.M. generated cells and reagents; Manuscript preparation
348	by L.Z. and R.J. with input from all authors.
349	
350	
351	Competing interests
352	R.J. is an advisor/co-founder of Fate Therapeutics, Fulcrum Therapeutics, Omega
353	Therapeutics, and Dewpoint Therapeutics. R.A.Y. is a founder and shareholder of Syros
354	Pharmaceuticals, Camp4 Therapeutics, Omega Therapeutics, and Dewpoint Therapeutics. All

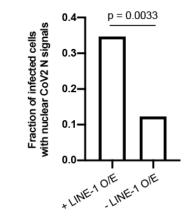

355 other authors declare no competing interests.

356 References 357 https://www.cdc.go.kr/board/board.es?mid=a3040200000&bid=0030. 358 1 Bullard, J. et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 359 2 360 From Diagnostic Samples. Clinical Infectious Diseases, doi:10.1093/cid/ciaa638 (2020). He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. 361 3 362 Nature Medicine 26, 672-675, doi:10.1038/s41591-020-0869-5 (2020). 363 4 Li, N., Wang, X. & Lv, T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J 364 Med Virol, doi:10.1002/jmv.25952 (2020). Mina, M. J., Parker, R. & Larremore, D. B. Rethinking Covid-19 Test Sensitivity — A 365 5 366 Strategy for Containment. New England Journal of Medicine 383, e120, 367 doi:10.1056/NEJMp2025631 (2020). 368 Sethuraman, N., Jeremiah, S. S. & Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. 6 369 JAMA 323, 2249-2251, doi:10.1001/jama.2020.8259 (2020). 370 7 Yang, J.-R. et al. Persistent viral RNA positivity during the recovery period of a patient 371 with SARS-CoV-2 infection. Journal of Medical Virology 92, 1681-1683, 372 doi:https://doi.org/10.1002/jmv.25940 (2020). 373 An, J. et al. Clinical characteristics of recovered COVID-19 patients with re-detectable 8 374 positive RNA test. Ann Transl Med 8, 1084, doi:10.21037/atm-20-5602 (2020). 375 9 Chen, D. et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J 376 Infect Dis 93, 297-299, doi:10.1016/j.ijid.2020.03.003 (2020). 377 Lan, L. et al. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA 10 378 323, 1502-1503, doi:10.1001/jama.2020.2783 (2020). Loconsole, D. et al. Recurrence of COVID-19 after recovery: a case report from Italy. 379 11 380 Infection, doi:10.1007/s15010-020-01444-1 (2020). 381 12 Lu, J. et al. Clinical, immunological and virological characterization of COVID-19 patients 382 that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine 59, 102960, 383 doi:10.1016/j.ebiom.2020.102960 (2020). 384 Luo, S., Guo, Y., Zhang, X. & Xu, H. A follow-up study of recovered patients with COVID-13 385 19 in Wuhan, China. Int J Infect Dis 99, 408-409, doi:10.1016/j.ijid.2020.05.119 (2020). 386 14 Ye, G. et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 387 reactivation. J Infect 80, e14-e17, doi:10.1016/j.jinf.2020.03.001 (2020). 388 To, K. K. et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 15 389 strain confirmed by whole genome sequencing. Clin Infect Dis, doi:10.1093/cid/ciaa1275 390 (2020). 391 Huang, J. et al. Recurrence of SARS-CoV-2 PCR positivity in COVID-19 patients: a single 16 center experience and potential implications. medRxiv, 2020.2005.2006.20089573, 392 393 doi:10.1101/2020.05.06.20089573 (2020). 394 17 Yuan, B. et al. Recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 395 patients during medical isolation observation. Sci Rep 10, 11887, doi:10.1038/s41598-396 020-68782-w (2020). 397 18 Alanagreh, L., Alzoughool, F. & Atoum, M. The Human Coronavirus Disease COVID-19: Its 398 Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms. Pathogens 9. doi:10.3390/pathogens9050331 (2020). 399

400	19	Fehr, A. R. & Perlman, S. Coronaviruses: an overview of their replication and
400 401	19	pathogenesis. <i>Methods Mol Biol</i> 1282 , 1-23, doi:10.1007/978-1-4939-2438-7 1 (2015).
401	20	de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent
402	20	insights into emerging coronaviruses. Nat Rev Microbiol 14 , 523-534,
403		doi:10.1038/nrmicro.2016.81 (2016).
404 405	21	Kazazian, H. H., Jr. & Moran, J. V. Mobile DNA in Health and Disease. N Engl J Med 377 ,
405	21	361-370, doi:10.1056/NEJMra1510092 (2017).
400 407	22	Lee, M. H. <i>et al.</i> Somatic APP gene recombination in Alzheimer's disease and normal
407	22	neurons. <i>Nature</i> 563 , 639-645, doi:10.1038/s41586-018-0718-6 (2018).
408 409	23	Brouha, B. <i>et al.</i> Hot L1s account for the bulk of retrotransposition in the human
409 410	25	population. Proceedings of the National Academy of Sciences of the United States of
410		America 100 , 5280-5285, doi:10.1073/pnas.0831042100 (2003).
411	24	Blanco-Melo, D. <i>et al.</i> Imbalanced Host Response to SARS-CoV-2 Drives Development of
412	24	COVID-19. <i>Cell</i> 181 , 1036-1045 e1039, doi:10.1016/j.cell.2020.04.026 (2020).
413	25	Huang, J. <i>et al.</i> SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung
414	23	Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. <i>Cell stem</i>
415		<i>cell</i> , doi:10.1016/j.stem.2020.09.013 (2020).
410	26	Perez-Bermejo, J. A. <i>et al.</i> SARS-CoV-2 infection of human iPSC-derived cardiac cells
417	20	predicts novel cytopathic features in hearts of COVID-19 patients. <i>bioRxiv</i> ,
419		doi:10.1101/2020.08.25.265561 (2020).
420	27	Jacob, F. <i>et al.</i> Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids
421	27	Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. <i>Cell stem</i>
422		<i>cell</i> , doi:10.1016/j.stem.2020.09.016 (2020).
423	28	Giobbe, G. G. <i>et al.</i> SARS-CoV-2 infection and replication in human fetal and pediatric
424	20	gastric organoids. <i>bioRxiv</i> , 2020.2006.2024.167049, doi:10.1101/2020.06.24.167049
425		(2020).
426	29	Liao, M. <i>et al.</i> Single-cell landscape of bronchoalveolar immune cells in patients with
427	20	COVID-19. <i>Nat Med</i> 26 , 842-844, doi:10.1038/s41591-020-0901-9 (2020).
428	30	Gill, S. E. <i>et al.</i> Transcriptional Profiling of Leukocytes in Critically III COVID19 Patients:
429		Implications for Interferon Response and Coagulation. <i>PREPRINT (Version 2) available at</i>
430		<i>Research Square</i> , doi:10.21203/rs.3.rs-63632/v2 (2020).
431	31	Kim, D. <i>et al.</i> The Architecture of SARS-CoV-2 Transcriptome. <i>Cell</i> 181 , 914-921 e910,
432		doi:10.1016/j.cell.2020.04.011 (2020).
433	32	https://www.who.int/docs/default-
434		source/coronaviruse/whoinhouseassays.pdf?sfvrsn=de3a76aa 2.
435	33	Jones, R. B. <i>et al.</i> LINE-1 retrotransposable element DNA accumulates in HIV-1-infected
436		cells. <i>J Virol</i> 87 , 13307-13320, doi:10.1128/JVI.02257-13 (2013).
437	34	Tiwari, B. et al. p53 directly represses human LINE1 transposons. Genes & development,
438		doi:10.1101/gad.343186.120 (2020).
439	35	Channappanavar, R. & Perlman, S. Pathogenic human coronavirus infections: causes and
440		consequences of cytokine storm and immunopathology. Semin Immunopathol 39 , 529-
441		539, doi:10.1007/s00281-017-0629-x (2017).
442	36	Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression.
443		The Lancet 395 , 1033-1034, doi:10.1016/s0140-6736(20)30628-0 (2020).


444	37	Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C. & Melguizo-
445		Rodriguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine
446		<i>Growth Factor Rev</i> 54 , 62-75, doi:10.1016/j.cytogfr.2020.06.001 (2020).
447	38	Jiang, C. et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1.
448		Nature 585 , 261-267, doi:10.1038/s41586-020-2651-8 (2020).
449	39	Naufer, M. N., Furano, A. V. & Williams, M. C. Protein-nucleic acid interactions of LINE-1
450		ORF1p. Semin Cell Dev Biol 86 , 140-149, doi:10.1016/j.semcdb.2018.03.019 (2019).
451	40	Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus
452		macaques and hamsters. Science 370 , 1110, doi:10.1126/science.abe2402 (2020).
453	41	Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells.
454		RNA 9 , 493-501, doi:10.1261/rna.2192803 (2003).
455	42	Wagstaff, B. J., Barnerssoi, M. & Roy-Engel, A. M. Evolutionary conservation of the
456		functional modularity of primate and murine LINE-1 elements. <i>PloS one</i> 6, e19672,
457		doi:10.1371/journal.pone.0019672 (2011).
458	43	Farkash, E. A., Kao, G. D., Horman, S. R. & Prak, E. T. Gamma radiation increases
459		endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic acids
460		research 34 , 1196-1204, doi:10.1093/nar/gkj522 (2006).
461	44	Zhang, L. et al. TSA-Seq reveals a largely "hardwired" genome organization relative to
462		nuclear speckles with small position changes tightly correlated with gene expression
463		changes. <i>bioRxiv</i> , 824433, doi:10.1101/824433 (2020).
464	45	Kim, J., Venkata, N. C., Hernandez Gonzalez, G. A., Khanna, N. & Belmont, A. S. Gene
465		expression amplification by nuclear speckle association. The Journal of cell biology 219,
466		doi:10.1083/jcb.201904046 (2020).
467	46	R Core Team (2020). R: A language and environment for statistical computing. R
468		Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u> .
469	47	Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21,
470		doi:10.1093/bioinformatics/bts635 (2013).
471	48	Criscione, S. W., Zhang, Y., Thompson, W., Sedivy, J. M. & Neretti, N. Transcriptional
472		landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15,
473		583, doi:10.1186/1471-2164-15-583 (2014).
474	49	Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
475		differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
476		140, doi:10.1093/bioinformatics/btp616 (2010).
477	50	McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor
478		RNA-Seq experiments with respect to biological variation. Nucleic acids research 40,
479		4288-4297, doi:10.1093/nar/gks042 (2012).
480	51	Brownjohn, P. W. et al. Functional Studies of Missense TREM2 Mutations in Human
481		Stem Cell-Derived Microglia. Stem cell reports 10, 1294-1307,
482		doi:10.1016/j.stemcr.2018.03.003 (2018).
483	52	Ma, H., Jeppesen, J. F. & Jaenisch, R. Human T Cells Expressing a CD19 CAR-T Receptor
484		Provide Insights into Mechanisms of Human CD19-Positive beta Cell Destruction. Cell
485		<i>Rep Med</i> 1 , 100097, doi:10.1016/j.xcrm.2020.100097 (2020).
486		
487		


488 Figures



490 Figure 1. Human – SARS-CoV-2 chimeric transcripts identified in published data sets of

- 491 **infected cultured and patient-derived cells. a)** Pipeline to identify human-CoV2 chimeric
- 492 RNA-Seq reads. b) Diagram showing human-CoV2 chimeric reads mapped to potential SARS-
- 493 CoV-2 integration sites in the human genome from published RNA-Seq data. c) Scatter plot
- 494 showing human-CoV2 chimeric read number (per million total mappable reads, y-axis) versus
- 495 SARS-CoV-2 read fraction of total mappable reads (x-axis) in published RNA-Seq datasets
- 496 (summarized in Supplementary Figure 1a) from different bio-samples with SARS-CoV-2
- 497 infection. d-e) Human-CoV2 chimeric read junctions (duplicates removed) mapped to the SARS-
- 498 CoV-2 genome (d) and distribution among SARS-CoV-2 genes (e, three biological replicates;
- 499 mean \pm s.e.m.). RNA-Seq data is from SARS-CoV-2 infected Calu3 cells (see Supplementary
- 500 Figure 1a). Chimeric read junction is defined as the "breaking point" of sequences mapped to
- 501 human or SARS-CoV-2 genome/transcriptome in a given RNA-Seq read.

е

503 Figure 2. SARS-CoV-2 RNA can be reverse-transcribed and integrated into the host

- 504 genome in cells with reverse transcriptase expression. a) Experimental workflow (top), PCR
- 505 primer sets (shown as amplicons, brown) and single-molecule RNA-FISH probes (red) to detect
- 506 reverse-transcription and integration of SARS-CoV-2 nucleocapsid (N) sequence (middle, blue).
- **b)** PCR detection of SARS-CoV-2 N sequences in cellular DNA purified from mock (left) or
- 508 SARS-CoV-2 (right) infected HEK293T cells without or with transfection of human LINE-1
- 509 (CMV-LINE1 or 5'UTR-LINE1) or HIV-1 RT. HSPA1A: human HSPA1A gene as control; N1 –
- 510 N4: SARS-CoV-2 N sequences as shown in a). c) qPCR detection and copy-number estimation
- of SARS-CoV-2 N sequences on gel-purified HEK293T genomic DNA. HSPA1A: human
- 512 HSPA1A gene as a reference; N2, N3: SARS-CoV-2 N sequences as shown in a). Three
- 513 biological replicates; mean \pm standard error of the mean (s.e.m.). d) Single-molecule RNA-FISH
- 514 (red) targeting SARS-CoV-2 N sequence using probes shown in a) plus LINE-1 ORF1 protein
- 515 immuno-staining (green) and merged channels with DAPI (blue) in SARS-CoV-2 infected
- 516 HEK293T cells with (left) or without (right) transfected LINE-1. Insets: 2.5x enlargement of
- 517 region in white-box to show nuclear signals of SARS-CoV-2 N sequence (white arrows). Images
- 518 were single z-slices from 3D optical sections ($0.2-\mu m z$ -steps). e) Fraction of HEK293T cells
- 519 infected by SARS-CoV-2 (indicated by cytoplasmic FISH signals) showing nuclear FISH signals
- of N sequence with (+ LINE-1 O/E, n = 75) or without (- LINE-1 O/E, n = 57) LINE-1
- 521 overexpression (indicated by LINE-1 ORF1 protein immuno-staining). Combination of two
- 522 independent cell samples; Chi-Square Test of Homogeneity.

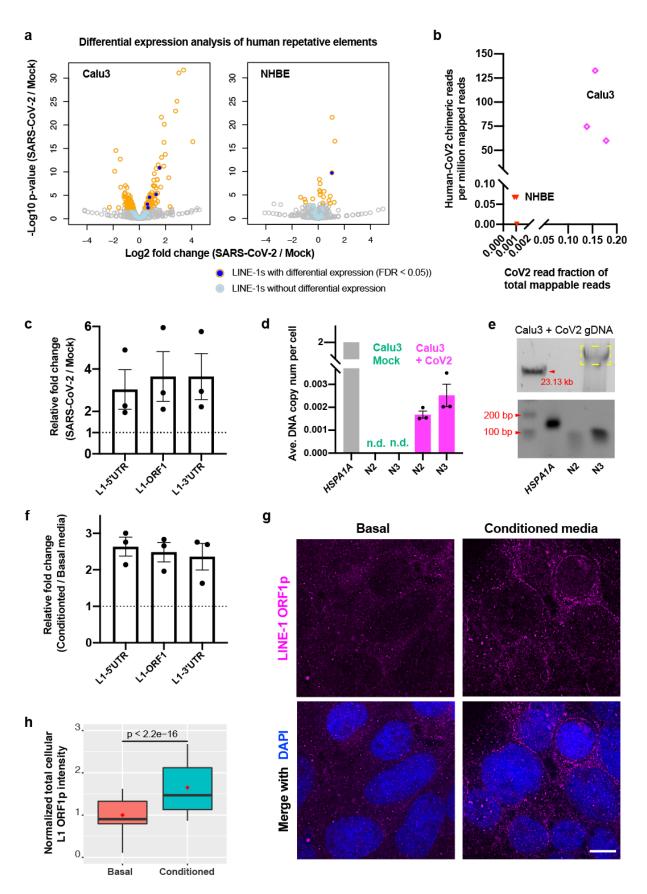
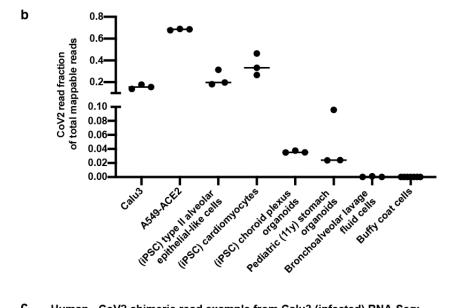


Figure 3. LINE-1 expression as an endogenous reverse-transcriptase source in human cells

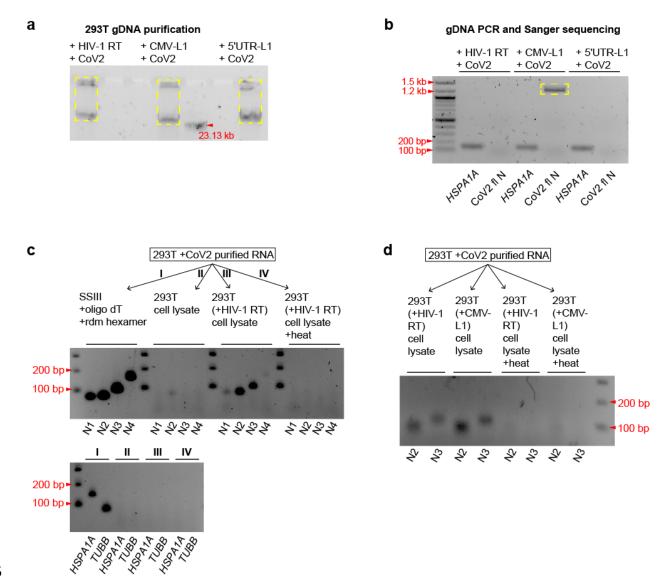

525	is induced by SARS-CoV-2 infection and cytokine-containing conditioned media treatment.
526	a) RNA-Seq (GSE147507, see Supplementary Figure 1a) differential expression analysis for
527	all human repetitive elements in SARS-CoV-2 versus mock-infected Calu3 (left) or NHBE
528	(right) cells. Volcano plots showing -Log10 p-values (y-axis) versus Log2 fold-changes (x-axis)
529	for all human repetitive elements with (orange circle) or without (grey circle) significant
530	expression changes (SARS-CoV-2 versus mock-infected); dots: LINE-1 families with (dark
531	blue) or without (light blue) significant expression changes. b) Scatter plot showing human-
532	CoV2 chimeric read number (per million total mappable reads, y-axis) versus SARS-CoV-2 read
533	fraction of total mappable reads (x-axis) in published RNA-Seq (GSE147507, see
534	Supplementary Figure 1a) from infected Calu3 (magenta) or NHBE (red) cells. c) Endogenous
535	LINE-1 expression fold-changes between SARS-CoV-2 versus mock-infected Calu3 cells
536	measured by RT-qPCR with primers probing 5'UTR, ORF1, or 3'UTR regions of LINE-1.
537	Reference genes: $GAPDH$ and $TUBB$. Three biological replicates; mean \pm s.e.m. d) qPCR
538	detection and copy-number estimation of SARS-CoV-2 N sequences in mock (green) or SARS-
539	CoV-2 infected (magenta) Calu3 cellular DNA. HSPA1A: human HSPA1A gene as a reference;
540	N2, N3: SARS-CoV-2 N sequences as shown in Figure 1a. Three biological replicates; mean \pm
541	s.e.m; n.d.: not detected. e) Gel purification of large-fragment genomic DNA (yellow box, top)
542	from SARS-CoV-2 infected Calu3 cells and PCR detection of SARS-CoV-2 N sequences in the
543	purified genomic DNA (bottom) with same primer sets as in d). f) Endogenous LINE-1
544	expression fold-changes in Calu3 cells comparing Myeloid conditioned versus basal media
545	treatment measured by RT-qPCR with primers probing 5'UTR, ORF1, or 3'UTR regions of
546	LINE-1. Reference genes: <i>GAPDH</i> and <i>TUBB</i> . Three biological replicates; mean \pm s.e.m. g)

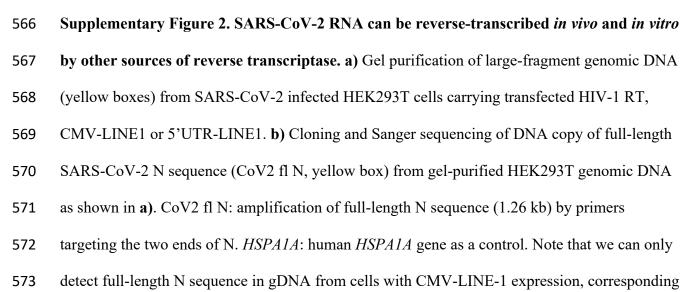
- 547 LINE-1 ORF1 protein immuno-staining (magenta, same exposure and intensity scaling) plus
- 548 merged channels with DAPI (blue) in Calu3 cells cultured in basal or myeloid conditioned
- 549 media. Scale bar: 10 μm. h) Normalized cellular total LINE-1 ORF1p immuno-staining signals
- of Calu3 cells cultured in basal (n = 84, mean = 1.0, median = 0.9) or myeloid conditioned media
- (n = 126, mean = 1.7, median = 1.5). Combination of two independent cell samples. Box plots
- show median (inside line), means (red dot), interquartile range (IQR, box), and upper/lower
- 553 quartile \pm 1.5-times IQRs (whiskers). Welch's t-test.

Supplementary Figures 554

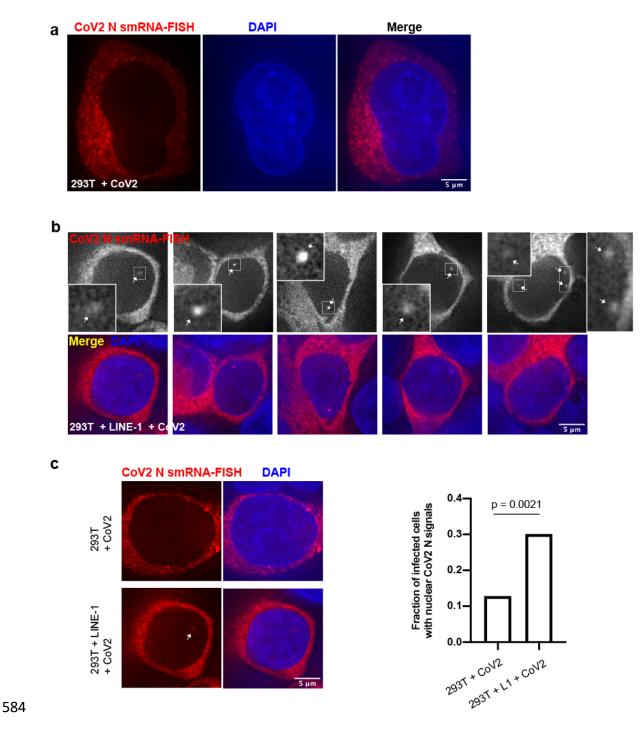
а

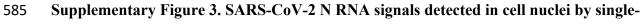
l	Data ID (GEO)	Sample	SARS-CoV-2 infection	RNA-Seq read length (nt)	Min overhang (threshold)
	GSE147507	Calu3, A549-ACE2, NHBE	MOI 2, 24 hrs	150	50
	GSE153277	iPSC-derived type II alveolar epithelial-like cells	MOI 5, 4 days	76+76	50
	GSE156754	iPSC-derived cardiomyocytes	MOI 0.1, 48 hrs	76+76	50
	GSE157852	iPSC-derived choroid plexus organoids	MOI 0.1-0.05, 72 hrs	72	20
	GSE153684	Cultured organoid from pediatric stomach tissue (age 11 year)	MOI 1	51+51	20
	GSE145926	Bronchoalveolar lavage fluid (BALF) cells	COVID19+ patient (severe)	26+100	20
	GSE154998	Blood buffy coat cells	COVID19+ patient (ICU)	72	20

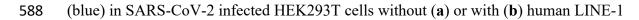

С Human - CoV2 chimeric read example from Calu3 (infected) RNA-Seq:

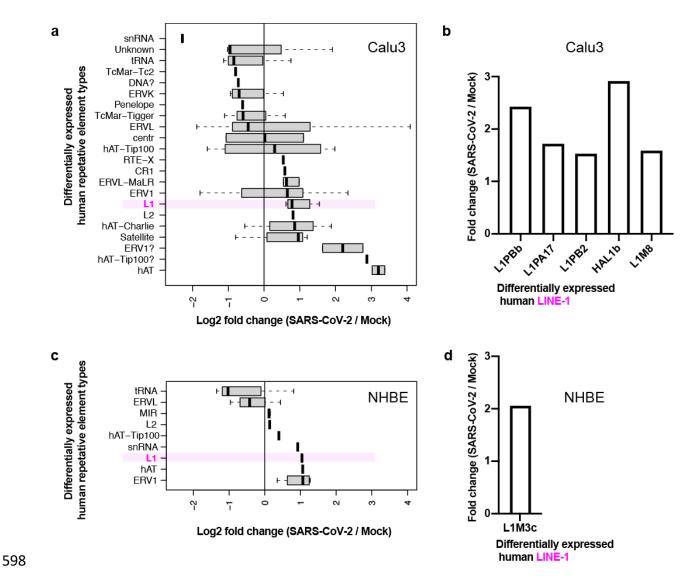

57 nt mapped to human Chromosome X

	chrX (q21.1) 22.2
	Scale 20 bases hg38
	chrX: 78,124,940 76,124,950 78,124,960 78,124,970 78,124,980
	>AAGCAGATTGTGTGGAATGGTCCTGTGGGGGTATTTGAATGGGAAGCTTTTGCCCGG
	GCCCGGCGCGTAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGC
	TGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCT
92 nt mapped t	o SARS-CoV-2 genome
NC_045512v2	NC_045512v2
	20 bases wuhCor1
29.745 29.750	29,755 29,760 29,765 29,770 29,775 29,780 29,785 29,790 29,795 29,800 29,805 29,810 29,815 29,820 29,825 29,830
	AUCGAGUGUACAGUGAACAAUGCUAGGGAGAGCUGCCUAUAUGGAAGAGCCCUAAUGUGUAAAAUUAAUU


556 Supplementary Figure 1. Human – SARS-CoV-2 chimeric reads identified from published


- 557 **RNA-Seq data. a)** Published data used to identify human CoV2 chimeric reads summarizing
- 558 GEO accession number (data ID), sample type, infection method/type (MOI: Multiplicity Of
- 559 Infection), RNA-Seq format (single or paired-end with read length), and threshold to call
- 560 chimeric reads (Min overhang: minimum number of bases mapped to either human or SARS-
- 561 CoV-2 genome/transcriptome to call a chimeric reads). b) Comparison of SARS-CoV-2 read
- 562 fraction of total mappable reads in the published RNA-Seq datasets as shown in a). c) One
- chimeric read example (149 nt) from Calu3 (infected) RNA-Seq with 57 nt mapped to human
- 564 Chromosome X (green) and 92 nt (magenta) mapped to the SARS-CoV-2 genome.

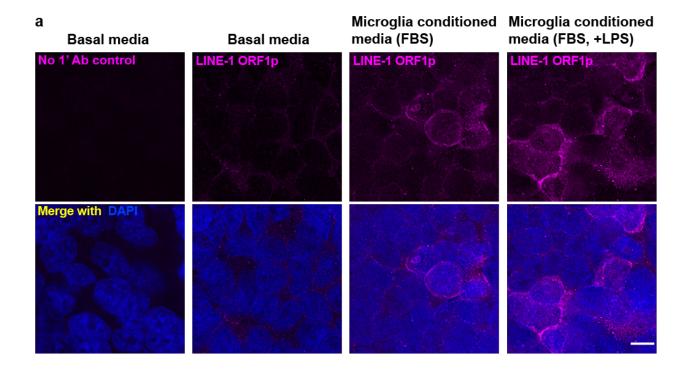

- to the high copy-number of integrated N sequences as shown in Figure 2c. c) *In vitro* reverse
- 575 transcription of SARS-CoV-2 RNA by adding RNA purified from SARS-Cov-2 infected
- 576 HEK293T cells to a commercial reverse transcriptase (I, SSIII, with oligo dT and random
- 577 hexamer primers, positive control), or HEK293T cell lysate (II), or lysates of HEK293T cells
- 578 expressing HIV-1 reverse transcriptase without (III) or with (IV) heat inactivation. Gel images
- 579 showing PCR detection of SARS-CoV-2 N sequences from the *in vitro* reverse transcription
- products using primer sets (N1 N4) as shown in Figure 2a. HSPA1A and TUBB: PCR primer
- sets against human *HSPA1A* and *TUBB* genes as controls. **d**) Same *in vitro* reverse transcription
- and PCR detection setup as in c) using lysates of HEK293T cells expressing HIV-1 reverse
- transcriptase or human LINE-1.



586 molecule RNA-FISH. a-b) Example images of single-molecule RNA-FISH (red/grey) targeting

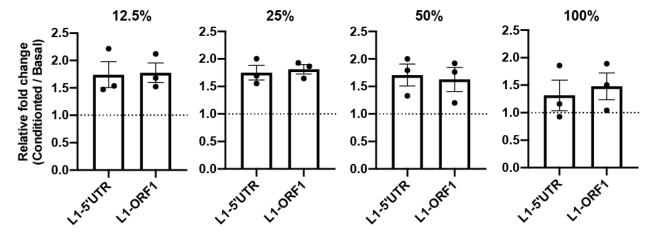
587 SARS-CoV-2 N sequence using probes shown in **Figure 2a** and merged channels with DAPI

- transfection. Insets in b): 4x enlargement of regions in white-boxes to show nuclear signals of
- 590 SARS-CoV-2 N sequence (white arrows). c) Comparison of nuclear N RNA-FISH signals in
- 591 SARS-CoV-2 infected HEK293T cells without or with human LINE-1 transfection. Left:
- 592 example images as in a) and b); Right: fraction of HEK293T cells infected by SARS-CoV-2
- 593 (indicated by cytoplasmic FISH signals) showing nuclear N RNA-FISH signals in cell
- 594 populations without (left bar, n = 109) or with (right bar, n = 103) CMV-LINE-1 plasmid
- transfection (~80% transfection efficiency). Combination of two independent cell samples; Chi-
- 596 Square Test of Homogeneity. All images shown were single z-slices from 3D optical sections
- 597 (0.2- μ m z-steps).



599 Supplementary Figure 4. LINE-1 induction in human cells correlates with SARS-CoV-2

600 infection. a, c) Log2 fold-changes (x-axis) of different types of human repetitive elements (y-


601 axis) with significant (FDR < 0.05) expression changes in SARS-CoV-2 versus mock infected

- 602 Calu3 (a) or NHBE (c) cells from published RNA-Seq data (GSE147507). b, d) Fold changes (y-
- 603 axis) of different human LINE-1 families (x-axis) with significant (FDR < 0.05) expression
- 604 changes in SARS-CoV-2 versus mock infected Calu3 (b) or NHBE (d) cells from published
- 605 RNA-Seq data (GSE147507, see Supplementary Figure 1a).

b

CAR-T conditioned media volume %:

606

607 Supplementary Figure 5. Cytokine containing media treatment triggers LINE-1 expression

in human cells. a) LINE-1 ORF1 protein immuno-staining (magenta, same exposure and

609 intensity scaling, 1st column: no primary antibody control) plus merged channels with DAPI

- 610 (blue) in HEK293T cells cultured in basal (1^{st} and 2^{nd} columns) or microglia conditioned media
- 611 (3rd column) or LPS-treated microglia conditioned media (4th column). Scale bar: 10 μm. b)
- 612 Endogenous LINE-1 expression fold-changes in Calu3 cells between CAR-T conditioned

- 613 (diluted with basal media at indicated percentage in volume) versus basal media treatment
- 614 measured by RT-qPCR with primers probing 5'UTR, ORF1, or 3'UTR regions of LINE-1.
- 615 Reference genes: *GAPDH* and *TUBB*. Three independent cell samples treated with two batches
- 616 of media; mean \pm s.e.m.

617 Supplementary Tables

618

619 Supplementary Table 1. Primer sequences used in this study

Species	Name	Sequence
SARS-CoV-2	N1	Forward: GACCCCAAAATCAGCGAAAT
		Reverse: TCTGGTTACTGCCAGTTGAATCTG
SARS-CoV-2	N2	Forward: GGGAGCCTTGAATACACCAAAA
		Reverse: TGTAGCACGATTGCAGCATTG
SARS-CoV-2	N3	Forward: GGGGAACTTCTCCTGCTAGAAT
		Reverse: CAGACATTTTGCTCTCAAGCTG
SARS-CoV-2	N4	Forward: AAATTTTGGGGGACCAGGAAC
		Reverse: TGGCACCTGTGTAGGTCAAC
SARS-CoV-2	N (full length)	Forward: ATGTCTGATAATGGACCCCAAAAT
		Reverse: TTAGGCCTGAGTTGAGTCAGC
Human	HSPA1A	Forward: ATCTCCACCTTGCCGTGTT
		Reverse: ATCCAGTGTTCCGTTTCCAG
Human	TUBB	Forward: TCCCTAAGCCTCCAGAAACG
		Reverse: CCAGAGTCAGGGGGTGTTCAT
Human	GAPDH	Forward: GTCTCCTCTGACTTCAACAGCG
		Reverse: ACCACCCTGTTGCTGTAGCCAA
Human	LINE-1-5'UTR	Forward: GACGCAGAAGACGGTGATTT
		Reverse: TCACCCCTTTCTTTGACTCG
Human	LINE-1-ORF1	Forward: CTCGGCAGAAACCCTACAAG
		Reverse: CCATGTTTAGCGCTTCCTTC
Human	LINE-1-3'UTR	Forward: CATGGAATACTATGCAGCCATAAA
		Reverse: TCCCACCTATGAGTGAGAA

Name	Sequence
Cov2NC_1	tgattttggggtccattatc
Cov2NC_2	agggtccaccaaacgtaatg
Cov2NC_3	tggttactgccagttgaatc
Cov2NC_4	ttattgggtaaaccttgggg
Cov2NC_5	tgagagcggtgaaccaagac
Cov2NC_6	cctcgagggaatttaaggtc
Cov2NC_7	ttggtgttaattggaacgcc
Cov2NC_8	aatttggtcatctggactgc
Cov2NC_9	accacgaattcgtctggtag
Cov2NC_10	gatctttcattttaccgtca
Cov2NC_11	tttgttagcaccatagggaa
Cov2NC_12	cagttgcaacccatatgatg
Cov2NC_13	gattgcagcattgttagcag
Cov2NC_14	tagaagccttttggcaatgt
Cov2NC_15	acgagaagaggcttgactgc
Cov2NC_16	actgttgcgactacgtgatg
Cov2NC_17	tgcctggagttgaatttctt
Cov2NC_18	cagcaaagcaagagcagcat
Cov2NC_19	agctggttcaatctgtcaag
Cov2NC_20	tttaccagacattttgctct
Cov2NC_21	tatgctttagtggcagtacg
Cov2NC_22	gccgaaagcttgtgttacat
Cov2NC_23	aattteettgggtttgttet
Cov2NC_24	cttgtctgattagttcctgg
Cov2NC_25	ggccaatgtttgtaatcagt
Cov2NC_26	tgggggcaaattgtgcaatt
Cov2NC_27	cgacattccgaagaacgctg
Cov2NC_28	gtgtgacttccatgccaatg
Cov2NC_29	tgtgtaggtcaaccacgttc
Cov2NC_30	atttggatctttgtcatcca
Cov2NC_31	ttgtatgcgtcaatatgctt
Cov2NC_32	ggtaaggcttgagtttcatc
Cov2NC_33	gaagagtcacagtttgctgt
Cov2NC_34	atcatccaaatctgcagcag
Cov2NC_35	ggattgttgcaattgtttgg

621 Supplementary Table 2. Single-molecule RNA FISH probe sequences used in this study